PROFILE ON PRODUCTION OF BED COVER, BED SHEETS AND TABLE LINEN

TABLE OF CONTENTS

PAGE

I.	SUMMARY	23-3
II.	PRODUCT DESCRIPTION & APPLICATION	23-3
III.	MARKET STUDY AND PLANT CAPACITY	23-4
	A. MARKET STUDY	23-4
	B. PLANT CAPACITY & PRODUCTION PROGRAMME	23-7
IV.	RAW MATERIALS AND INPUTS	23-8
	A. RAW & AUXILIARY MATERIALS	23-8
	B. UTILITIES	23-9
V.	TECHNOLOGY & ENGINEERING	23-10
	A. TECHNOLOGY	23-10
	B. ENGINEERING	23-10
VI.	MANPOWER & TRAINING REQUIREMENT	23-14
	A. MANPOWER REQUIREMENT	23-14
	B. TRAINING REQUIREMENT	23-14
VII.	FINANCIAL ANLYSIS	23-15
	A. TOTAL INITIAL INVESTMENT COST	23-15
	B. PRODUCTION COST	23-16
	C. FINANCIAL EVALUATION	23-17
	D. ECONOMIC BENEFITS	23-19

I. SUMMARY

This profile envisages the establishment of a plant for the production of bed sheets, bed covers and table linen with a capacity of 200,000 pairs, 100,000 pieces and 200,000 pieces, respectively per annum.

The major raw materials required are dyed cotton fabrics, dyed nylon fabrics and sewing thread which are available locally.

The present demand for the proposed product is estimated at 1.7 million kg per annum. The demand is expected to reach at 3.5 million kg by the year 2018.

The total investment requirement is estimated at Birr 7.32 million, out of which Birr 1.62 million is required for plant and machinery. The plant will create employment opportunities for 41 persons.

The project is financially viable with an internal rate of return (IRR) of 27.10% and a net present value (NPV) of Birr 5.47 million ,discounted at 8.5%.

The project has a backward linkage with the with the textile sector. The establishment of such factory will have a foreign exchange saving effect to the country by substituting the current imports.

II. PRODUCT DESCRIPTION AND APPLICATION

Bed cover is a fabric worn on the bed over the blanket and sheet is used on the bed inside a blanket. Table linen on the other hand is used to cover a table.

They have higher demand especially by the urban population. Current demand is met through local production and import.

The product can be made from cotton, blends of cotton and man - made fiber and all nylon.

III. MARKET STUDY AND PLANT CAPCITY

A. MARKET STUDY

1. Past Supply and Present Demand

Bedding linens are essential for the visual faced and comfort of bedrooms. There are different types of bed linens made from natural, manmade and blend fabrics. Bed linens may be plain dye, printed, patterned or embroidered.

Table linens enhance the style and substance to the entire table settings and the décor of dinning rooms. For special dinners or casual family dinner, table linens which are available in various colors, styles, design and range add a fashionable touch to any meal. Traditionally many people make their own table linens as a table cloth or mat. However more varieties, styles and designs are available in the market. Table linens are made from printed or dyed fabrics, mostly from cotton fabric. Types of table linens include napkins, table cloths and table mats.

Kitchen linens comprising wide variety of products like aprons, tray cloth, dish cloth, toilet linen, pot holders are basic necessities in the modern kitchen. Best quality Kitchen linens are washable, heat resistant, durable and perfect for drying utensils and wet hands.

Supply of bed linens, table linens and kitchen and toilet linens is met through domestic production as well as import. While the domestic production is limited in variety and style, imported products are available in diversified designs and quality levels. The total imported supply of bed linens table linens and kitchen and toilet linens is presented in Table 3.1. As can be seen from the Table 3.1 the supply of the products for the last ten years shows a steady growth. The least square estimate fitted for the data set reveals:

$$Y = 177,389 X - 410,365 R^2 = 87.1\%$$

Accordingly, the total supply of bed linens, table linens and kitchen and toilet linens is growing annually by 177,389 kg. Thus current effective demand is estimated at 1,718,303 kg.

<u>IN KILOGRAM</u>					
Year	Bed linen	Table linen	Kitchen & Toilet linen	Total	
1997	41,311	742	7,900	49,953	
1998	31,588	2,160	3,976	37,724	
1999	75,122	3,178	21,181	99,481	
2000	112,952	4,144	31,860	148,956	
2001	170,791	9,692	102,684	283,167	
2002	270,087	10,727	182,711	463,585	
2003	480,279	8,854	271,293	761,426	
2004	613,036	8,882	258,986	880,904	
2005	566,908	9,695	568,482	1,145,085	
2006	1,167,231	9,314	605,940	1,782,465	

<u>Table 3.1</u> <u>IMPORTED BED LINEN, TABLE LINEN, KITCHEN AND TOILET LINEN</u> IN KILOGRAM

Source: Customs Authority.

2. Projected Demand

The demand for bed linens, table linens, kitchen and toilet linens is directly related to growth in standard of living and income. The supply of these products for the last ten years exhibits a strong positive trend, with an explanatory power of 87%. The demand is therefore projected based on the linear model built for the last ten years supply.

Accordingly, the demand for bed linens, table linens, kitchen and toilet linens in 2018 is estimated to be 3,492,193 kg. Projected demand is presented in Table 3.2.

Table 3.2

PROJECTED DEMAND FOR IMPORTED BED LINEN, TABLE LINEN, KITCHEN AND TOILET LINEN (KG)

Year	Projected Demand
2009	1,895,692
2010	2,073,081
2011	2,250,470
2012	2,427,859
2013	2,605,248
2014	2,782,637
2015	2,960,026
2016	3,137,415
2017	3,314,804
2018	3,492,193

3. Pricing and Distribution

The current retail price for bed linens, table linens and kitchen linens is Birr 70, 30 and 22, respectively. The respective recommended factory gate price for the project under study is Birr 60, 25 and 18.

Distribution of all products of the project will get into the market through the existing wholesale channel specializing in those products.

B. PLANT CAPACITY AND PRODUCTION PROGRAMME

1. Plant Capacity

The envisaged plant is intended to produce bed sheet, bed cover, table cover, and kitchen cover; all are made of cotton fabrics or from blind of cotton and man –made fiber. The bed sheet, bed cover, table cover, and kitchen lines are all intended to be produced from different colored fabrics with stitched decorative designs.

Consequently the envisaged plant will produce bed sheet of about 3 m 2 areas, bed cover 4.4 m 2 area, table linen of 1.8 m 2 and kitchen 1.8 m 2 , all finished with decorative designs.

Table 3.2 of the market study indicates that demand projection of the assorted products for the year 2009 will be about 1.9 million kg and this figure will grow to about 2.8 million kg in 2014 and then to about 3.5 million kg in the year 2018. In view of the above demands, it is proposed that the envisaged plant will have an annual production capacity of 200,000 pairs of bed sheets, 100,000 pieces of bed covers and 200,000 pieces of table and kitchen covers.

The plant will start operation operate single shift 8 hours a day and for 300 days a year the production can be increased if the plant operates double shift for 16 hours a day and for 300 days a year.

2. Production Programme

That plant will start operation at 75 % of its capacity during the first year of production. It will then raise its production to 85 % in the second year, and then to 100 % in the third year and then after.

Table 3.3 PRODUCTION PROGRAMME

	Capacity	Production			
Voor	Utilization (%)	Bed Sheet	Bed Cover (Pcs)	Table And	
Y ear		(Pairs)		Kitchen Linens	
				(Pcs)	
1	75	150,000	75,000	150,000	
2	85	170,00	85,000	170,000	
3 - 15	100	200,000	100,000	200,000	

IV. MATERIALS AND INPUTS

A. RAW & AUXILIARY MATERIALS

The major raw material required for the production of the items indicated above are dyed cotton fabrics, nylon fabrics and sewing thread of various colors.

Auxiliary material includes dyestuffs and coloring material, packing materials and other inputs. Annual requirement of these materials at full capacity production are given in Table 4.1.

The textile industries operational in different parts of Ethiopia can be used as sources of raw materials. These include Akaki Textile Factory, Kombolcha Textile Factory, Bahir Dar Textile Factory, Dire Dawa Textile Factory etc. Packing materials can be procured from Wonji Pulp and Paper Factory. Ethio—Japan Nylon Factory is a source of nylon fabrics.

<u>Table 4.1</u>

ANNUAL REQUIREMENT OF RAW AND AUXILIARY MATERIALS

Sr.			Cost '000 Birr		
No.	Description	Qty.	FC	LC	ТС
	A. Raw Material				
1	Dyed cotton fabrics (m ²)	1,640,000		11,480	11,480
2	Dyed Nylon fabrics (m ²)	360,000		2,952	2,952
3	Sewing thread	Lumpsum		0,120	120
	Sub Total			14,552	14,552
	B. Auxiliary Materials				
1	Dyestuffs & coloring Materials	Lumsum	125	10	135
2	Packing Material	دد	-	65	65
3	Other Inputs	دد	-	10	10
	Sub Total		125	85	210
	Total Cost		125	14,637	14,762

B. UTILITIES

Electricity and water are utilities required for the plant. Annual electricity requirement is estimated to be 15,000 kWh, and water requirement is 2000 m^3 . The amount and value of annual requirement of utilities for the envisaged plant is given in Table 4.2 below.

Table 4.2 UTILITIES REQUIREMENT AND COST

Description	Qty	Cost
		(in Birr)
Electricity (kWh)	15,000	7,104
Water (m ³)	2000	6,500
Total		13,604

V. TECHNOLOGY AND ENGINEERING

A. TECHNOLOGY

1. Production Process

The production of bed sheets, bed covers and table linen involves such activities like cutting, sewing, pattern making, designing, dyeing and packing. These activities are simple and can be mastered in very short time. The production of bed covers, bed sheets and table linen does not have any negative impact on environment.

2. Source of Technology

The technology of sewing and production of item indicated above can be carried out by simple sewing machines. Machinery supplier address is given below.

Burma Machine Tools Guru Ram, Dass Road Dhandari Kalar G.T. Road,wdhiana - 14010 INDIA

B. ENGINEERING

1. Machinery and equipment

Table 5.1 shows the list of machinery and equipment required for the envisaged plant.

23-11

Table 5.1

MACHINERY AND EQUIPMENT REQUIREMENT AND COST

Sr.			Cost '000 Birr		rr
No.	Description	Qty.	FC	LC	TC
1	sewing machine (industrial type)	30	300	-	300
2	Flat bed, bottom top and bottom covering stitch	10	150	-	150
	machine				
3	High speed 1- needle cylinder, bed lock stitch	5	175	-	175
4	Portable steam Iron	20	7.5	-	7.5
5	Scissors	20	-		
6	Tables	10	-		
7	Others equipmentsmall steam generator(Reqd	835	-	835
	Birr 350000) ; Dyeing and drying unit (Birr				
	285000); and cleaning and pumping unit (
	Birr175000).				
	Sub-Total		1,467.5		1,467.5
	Bank, customers, Insurance & Freight costs		-	150	150
	Total Cost		1,467.5	150	1,617.5

2. Land, Building And Civil Works

The total land requirement for the envisaged plant is estimated to be 1000 m². Built-up area is estimated at 600 m². This consists of 400 square meters for production hall, 80 square meters for offices, and 120 square meters for stores. At the rate of Birr 2,200 per m², the investment in building will be Birr 1.32 million.

According to the Federal Legislation on the Lease Holding of Urban Land (Proclamation No 272/2002) in principle, urban land permit by lease is on auction or negotiation basis, however, the time and condition of applying the proclamation shall be determined by the concerned regional or city government depending on the level of development.

The legislation has also set the maximum on lease period and the payment of lease prices. The lease period ranges from 99 years for education, cultural research health, sport, NGO, religious and residential area to 80 years for industry and 70 years for trade while the lease payment period ranges from 10 years to 60 years based on the towns grade and type of investment.

Moreover, advance payment of lease based on the type of investment ranges from 5% to 10%. The lease price is payable after the grace period annually. For those that pay the entire amount of the lease will receive 0.5% discount from the total lease value and those that pay in installments will be charged interest based on the prevailing interest rate of banks. Moreover, based on the type of investment, two to seven years grace period shall also be provided.

However, the Federal Legislation on the Lease Holding of Urban Land apart from setting the maximum has conferred on regional and city governments the power to issue regulations on the exact terms based on the development level of each region.

In Addis Ababa the City's Land Administration and Development Authority is directly responsible in dealing with matters concerning land. However, regarding the manufacturing sector, industrial zone preparation is one of the strategic intervention measures adopted by the City Administration for the promotion of the sector and all manufacturing projects are assumed to be located in the developed industrial zones.

Regarding land allocation of industrial zones if the land requirement of the project is blow 5000 m² the land lease request is evaluated and decided upon by the Industrial Zone Development and Coordination Committee of the City's Investment Authority. However, if the land request is above $5,000 \text{ m}^2$ the request is evaluated by the City's Investment Authority and passed with recommendation to the Land Development and Administration Authority for decision, while the lease price is the same for both cases. The land lease price in the industrial zones varies from one place to the other. For example, a land was allocated with a lease price of Birr 284 $/m^2$ in Akakai-Kalti and Birr 341/ m^2 in Lebu and recently the city's Investment Agency has proposed a lease price of Birr 346 per m^2 for all industrial zones.

Accordingly, in order to estimate the land lease cost of the project profiles it is assumed that all manufacturing projects will be located in the industrial zones. Therefore, for this profile, which is a manufacturing project a land lease rate of Birr 346 per m² is adopted.

On the other hand, some of the investment incentives arranged by the Addis Ababa City Administration on lease payment for industrial projects are granting longer grace period and extending the lease payment period. The criterions are creation of job opportunity, foreign exchange saving, investment capital and land utilization tendency etc. Accordingly, Table 5.2 shows incentives for lease payment.

Table 5.2

INCENTIVES FOR LEASE PAYMENT OF INDUSTRIAL PROJECTS

		Payment	Down
	Grace	Completion	
Scored point	period	Period	Payment
Above 75%	5 Years	30 Years	10%
From 50 - 75%	5 Years	28 Years	10%
From 25 - 49%	4 Years	25 Years	10%

For the purpose of this project profile the average i.e. five years grace period, 28 years payment completion period and 10% down payment is used. The period of lease for industry is 60 years .

Accordingly, the total lease cost, for a period of 60 years with cost of Birr 346 per m^2 , is estimated at Birr 20.76 million of which 10% or Birr 2,076,000 will be paid in advance. The remaining Birr 18.68 million will be paid in equal installments with in 28 years i.e. Birr 667,286 annually.

VII. MANPOWER AND TRAINING REQUREMENT

A. MANPOWER REQUREMENT

Man power is required both for administration and production. The lists of man power, including the monthly and annual salary are given in Table 6.1 below

B. TRAINING REQUREMENT

Skill up – grading training is required for equipment operations for the period of two weeks. A total of Birr 5,000 is earmarked for carrying out the training programme.

<u>Table 7.1</u>

MAN POWER REQUIREMENT AND ANNUAL LABOUR COST

Sr.		Req.	Monthly salary	Annual Salary
No	Description	No.	(Birr)	(Birr)
	A. Administration			
1	Plant manager	1	3000	36,000
2	Secretary	1	800	9600
3	Sales Person	1	1200	14,400
4	Driver	1	500	6000
5	Guard	3	1050	12,600
	Sub-Total	4		78,600
	B. Production			
1	Operators	20	600	144,000
2	Helpers	5	2250	27,000
3	Designer	2	1800	21,600
	Sub-Total	37		192,600
	Workers' Benefit (25% of basic			67,800
	salary)			
	Total Cost	41		339,000

VII. FINANCIAL ANALYSIS

The financial analysis of the bed sheets, bed covers and table linen project is based on the data presented in the previous chapters and the following assumptions:-

VII. FINANCIAL ANALYSIS

The financial analysis of the chicken meat processing project is based on the data presented in the previous chapters and the following assumptions:-

Construction period	1 year
Source of finance	30 % equity
	70 % loan
Tax holidays	3 years
Bank interest	8.5%
Discount cash flow	8.5%
Accounts receivable	30 days
Raw material local	30 days
Raw material import	90 days
Work in progress	1 days
Finished products	30 days
Cash in hand	5 days
Accounts payable	30 days
Repair and maintenance	5 % of machinery cost

A. TOTAL INITIAL INVESTMENT COST

The total investment cost of the project including working capital is estimated at Birr 7.32 million, of which 20 per cent will be required in foreign currency.

The major breakdown of the total initial investment cost is shown in Table 7.1.

Sr. No.	Cost Items	Local Cost	Foreign Cost	Total Cost
1	Land lease value	2,076.00	-	2,076.00
2	Building and Civil Work	1,320.00	-	1,320.00
3	Plant Machinery and Equipment	150.00	1,467.50	1,617.50
4	Office Furniture and Equipment	100.00	-	100.00
5	Vehicle	250.00	-	250.00
6	Pre-production Expenditure*	484.61	-	484.61
7	Working Capital	1,474.23	-	1,474.23
	Total Investment cost	5,854.84	1,467.50	7,322.34

<u>Table 7.1</u> <u>INITIAL INVESTMENT COST ('000 Birr)</u>

* N.B Pre-production expenditure includes interest during construction (Birr 334.61 thousand, training (Birr 5 thousand) and Birr 145 thousand costs of registration, licensing and formation of the company including legal fees, commissioning expenses, etc.

B. PRODUCTION COST

The annual production cost at full operation capacity is estimated at Birr 15.71 million (see Table 7.2). The raw material cost accounts for 93.93 per cent of the production cost. The other major components of the production cost are depreciation ,

direct labour and cost of finance which account for 1.70 %, 1.62% and 1.42% respectively. The remaining 1.33% is the share of utility, repair and maintenance, labour overhead and other administration cost.

<u>Table 7.2</u> <u>ANNUAL PRODUCTION COST AT FULL CAPACITY ('000 BIRR)</u>

Items	Cost	%
Raw Material and Inputs	14,762.00	93.93
Utilities	13.60	0.09
Maintenance and repair	80.88	0.51
Labour direct	254.55	1.62
Labour overheads	67.80	0.43
Administration Costs	46.33	0.29
Land lease cost	-	-
Total Operating Costs	15,225.16	96.88
Depreciation	267.75	1.70
Cost of Finance	222.46	1.42
Total Production Cost	15,715.37	100

C. FINANCIAL EVALUATION

1. **Profitability**

Based on the projected profit and loss statement, the project will generate a profit through out its operation life. Annual net profit after tax will grow from Birr 1.39 million to Birr 1.76 million during the life of the project. Moreover, at the end of the project life the accumulated cash flow amounts to Birr 15.71 million.

2. Ratios

In financial analysis financial ratios and efficiency ratios are used as an index or yardstick for evaluating the financial position of a firm. It is also an indicator for the strength and weakness of the firm or a project. Using the year-end balance sheet figures and other relevant data, the most important ratios such as return on sales which is computed by dividing net income by revenue, return on assets (operating income divided by assets), return on equity (net profit divided by equity) and return on total investment (net profit plus interest divided by total investment) has been carried out over the period of the project life and all the results are found to be satisfactory.

3. Break-even Analysis

The break-even analysis establishes a relationship between operation costs and revenues. It indicates the level at which costs and revenue are in equilibrium. To this end, the break-even point of the project including cost of finance when it starts to operate at full capacity (year 3) is estimated by using income statement projection.

 $BE = \frac{Fixed Cost}{Sales - Variable Cost} = 21 \%$

4. Payback Period

The pay back period, also called pay – off period is defined as the period required to recover the original investment outlay through the accumulated net cash flows earned by the project. Accordingly, based on the projected cash flow it is estimated that the project's initial investment will be fully recovered within 4 years.

5. Internal Rate of Return

The internal rate of return (IRR) is the annualized effective compounded return rate that can be earned on the invested capital, i.e., the yield on the investment. Put another way, the internal rate of return for an investment is the discount rate that makes the net present value of the investment's income stream total to zero. It is an indicator of the efficiency or quality of an investment. A project is a good investment proposition if its IRR is greater than the rate of return that could be earned by alternate investments or putting the money in a bank account. Accordingly, the IRR of this porject is computed to be 27.10 % indicating the valability of the project.

6. Net Present Value

Net present value (NPV) is defined as the total present (discounted) value of a time series of cash flows. NPV aggregates cash flows that occur during different periods of time during the life of a project in to a common measuring unit i.e. present value. It is a standard method for using the time value of money to appraise long-term projects. NPV is an indicator of how much value an investment or project adds to the capital invested. In principal a project is accepted if the NPV is non-negative.

Accordingly, the net present value of the project at 8.5% discount rate is found to be Birr 5.47 million which is acceptable.

D. ECONOMIC BENEFITS

The project can create employment for 41 persons. In addition to supply of the domestic needs, the project will generate Birr 1.87 million in terms of tax revenue. The establishment of such factory will have a foreign exchange saving effect to the country by substituting the current imports. Moreover, the product has export potential.